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The Inverse Function Theorem (IFT)

Let f : (a,b) — R be a continuously differentiable function, zy € (a,b) is a point where f’(zq) # 0.
Then there exists an open interval I C (a,b) with zy € I, the restriction f|; is injective with a continuously
differentiable inverse g : J — I defined on an interval J := f(I), and

J(y) = m for all y € J

Simply, if the derivative of fat a point is continuous and nonzero, then the
function is invertible in some neighborhood around that point.

The derivative of the inverse function is given by the formula for g’(y).



Prerequisites for the Proof of IF'T

Proposition 3.2.7
Exercise 3.2.11
Proposition 3.6.3
Proposition 3.6.6
Proposition 4.2.8
Lemma 4.4.1



Proposition 3.2.7

Let ABCRand f: B— Rand g: A— B be functions. If g is continuous at ¢ € A and f is continuous at
g(c), then fog: A— R is continuous at c.

Proof. Let {z,} be a sequence in A such that limx,, = ¢. As g is continuous at ¢, then {g(z, )} converges to
g(c). As f is continuous at g(c), then {f(g(z,))} converges to f(g(c)). Thus f o g is continuous at c. O

If a function is continuous at a point (g continuous at c), and a second function f (mapped
from g’s codomain) is continuous at g(c), then the composition of the two functions is
continuous at c.

Intuitively, if we input a continuous function’s image to another continuous function
(composition), then the result is continuous.



Exercise 3.2.11

Let f : R — R be continuous. Suppose f(c) > 0. Show that there exists an a > 0 such that for all
z € (c — a,c+ a) we have f(x) > 0.

Main idea: If a function at a point (f(¢)) is positive, then there exists a small
neighborhood around that point for which f(x) for all x in the neighborhood is also
positive.



Proof of Exercise 3.2.11

Let f : R — R be continuous. Suppose f(c¢) > 0. Show that there exists an a > 0 such that for all
z € (c — a,c+ a) we have f(x) > 0.

Proof. Choose € such that f(c) —e > 0. This is possible by the Archimedean Property. Then there exists
some ¢ > 0 such that if x € R and |z —c| < 6, then |f(z) — f(c)| < € by the definition of continuity. Therefore
|f(x) — f(c)| < eVz € (c—6,c+9).

= —e< f(z) — f(c) <eVx € (c—9d,c+9).

= f(c)—e< f(z) < e+ f(c) Vx € (c—6,c+ 9).

Since f(c) —e > 0= 0< f(z) Vx € (c—§,c+ 9).

Let o = §. Thus we have found a > 0 such that Vz € (¢ — a,c+ «), f(x) > 0.



Corollary 3.6.3

If I ¢ R is an interval and f : I — R is monotone and not constant, then f(I) is an interval if and
only if f is continuous.

Similar to the intermediate value theorem:
- If fis continuous across an interval, then its image will contain every value in an interval.

Main ideas of proof (proof long and tedious):

- Suppose f continuous
- Take two points (x1, x2)
- Use Intermediate Value Theorem to find an arbitrary point between them to find an

arbitrary point in f(l), and thus it is an interval (x1, x2)

- Suppose f(l) is an interval - prove by contrapositive
- Introduce a discontinuity
- Show that there are point(s) missing in the potential interval (/).



Proposition 3.6.6

If I C R is an interval and f : I — R is strictly monotone, then the inverse f=! : f(I) — I is continu-
ous.

Main ideas of proof (proof long and tedious):
- If fis strictly increasing or decreasing, then so is its inverse in the same manner.
- Consider the left and right limits as the inverse approaches an arbitrary point
- They can be written as the supremum and infimum of subsets of /.
- The left and right limits are the same because fis strictly monotone.



Proposition 4.2.8

Let I be an interval and let f : I — R be a differentiable function. Then
(i) If f'(x) > 0 for all x € I, then f is strictly increasing.
(ii) If f'(z) < 0 for all x € I, then f is strictly decreasing.

Main ideas of Proof*
Part (i):

1. Consider f'(x) > 0 for all x in I = (a, b)
2. Choose two values (x, y) in [ such thata < x <y <b
a.  Use Mean Value Theorem to show that f(y) > f(x) and thus f is strictly increasing

Part (ii):
1. Consider f'(x) < 0 for all xin I = (a, b)

2.  Choose two values (x, y) in I such thata < x <y <b
a. Use Mean Value Theorem to show that f(y) < f(x) and thus f is strictly decreasing



Lemma 4.4.1

Let I,J C R be intervals. If f : I — J is strictly monotone (hence one-to-one), onto (f(I) = J),
differentiable at xo € I, and f’(z0) # 0, then the inverse f~! is differentiable at yo = f(z0) and

i _ 1 o 1
() (yo) = F(f~(wo) ~ f'(xo0)"

If f is continuously differentiable and f’ is never zero, then f~! is continuously differentiable.



Proof of Lemma 4.4.1

Proof. By Proposition 3.6.6, f has a continuous inverse. Name the inverse g : J — I. Let ¢, yo be defined
as in the statement. For any z € I, y := f(z). If x # 20 and so y # y0,

9W)—9o) _ g(f(x))—g(f(z0)) _ _ z—mz0
Y—Yo f(@)—f(=0) f(@)—f(zo)"

ﬂﬂ.__, T T
Let Q(:p) = {f(ii)—f(z()) 7_/‘- 0
f'(z0)’ T = To

Since f is differentiable at z,

llmz__)on(m) — hm:c—n:o f(z:§:}:(()m0) = f/(lg;o) . Q(.’EO)

so @ is continuous at zg. As g(y) is continuous at yg, the composition Q(g(y)) = %y—"l is continuous at
yo by Proposition 3.2.7. Therefore

oy = Q(9(0)) = limy_y, Q(g(y)) = limy_,,, LU=000)

So g is differentiable at yo and ¢'(yo) = Wﬁm' If f is continuous and nonzero at all x € I, then the lemma

applies at all z € I. As g is also continuous (since it is differentiable), the derivative ¢'(y) = m must be

continuous.
|



Combining what we
know...



Proof of Inverse Function Theorem

Let f : (a,b) — R be a continuously differentiable function, zy € (a,b) is a point where f’(zq) # 0.
Then there exists an open interval I C (a,b) with xg € I, the restriction f|; is injective with a continuously
differentiable inverse g : J — I defined on an interval J := f(I), and

J(y) = f(()) for all y € J

Proof. Without loss of generality, suppose f'(xzg) > 0. As f’ is continuous, there must exist an open interval
I = (zg — 0,29 + 0) such that f'(z) > 0 for all z € I by the conclusion in Exercise 3.2.11. By Proposition
4.2.8, f is then strictly increasing on I, and hence the restriction f|; is bijective onto J := f(I). As f is
continuous, then by the Corollary 3.6.3 f (I) is an interval. Then by Lemma 4.4.1, f~! := g is differentiable

at yo = f(xo), and ¢'(yo) = f'(:co) — (g(yo))

O



Application of the Theorem

Let f : (—00,00) — R be defined by f(z) = e*. Notice f is continuously differentiable as
f'(x) = e*. Also notice f'(z) # 0 for all x € R. By the Inverse Function Theorem, for all
zy € R, there exists an I C R,zy € I, the restriction f|; is injective with a continuously

differentiable inverse g : f(I) — I and, for all y € J,

i B 1
9 = o)

Since we have intervals for all x € R, it follows that this applies for f on all of R. Then,
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